Güneş enerjisi teknolojileri yöntem, malzeme ve teknolojik düzey açısından çok çeşitlilik göstermekle birlikte iki ana gruba ayrılabilir:
Fotovoltaik Güneş Teknolojisi: Fotovoltaik hücreler denen yarı-iletken malzemeler güneş ışığını doğrudan elektriğe çevirirler.
Isıl Güneş Teknolojileri: Bu sistemlerde öncelikle güneş enerjisinden ısı elde edilir. Bu ısı doğrudan kullanılabileceği gibi elektrik üretiminde de kullanılabilir.
Fotovoltaik Hücreler
Güneş hücreleri (fotovoltaik hücreler), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş hücreleri alanları genellikle 100 cm² civarında, kalınlıkları ise 0,1- 0,4 mm arasındadır.
Güneş hücreleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Hücrenin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir.
Güneş enerjisi, güneş hücresinin yapısına bağlı olarak % 5 ile % 30 arasında bir verimle elektrik enerjisine çevrilebilir. Güç çıkışını artırmak amacıyla çok sayıda güneş hücresi birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş hücresi modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt’tan MEGA Watt’lara kadar sistem oluşturulur.
Fotovoltaik Hücrelerinin Yapımında Kullanılan Malzemeler
Fotovoltaik hücreler pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır:
Kristal Silisyum: Önce büyütülüp daha sonra 150-200 mikron kalınlıkta ince tabakalar halinde dilimlenen Tek kristal Silisyum bloklardan üretilen güneş pillerinde laboratuar şartlarında %24, ticari modüllerde ise %15’in üzerinde verim elde edilmektedir. Dökme silisyum bloklardan dilimlenerek elde edilen Çok kristal Silisyum güneş pilleri ise daha ucuza üretilmekte, ancak verim de %2-5 kadar düşük olmaktadır. Verim, laboratuar şartlarında %18, ticari modüllerde ise %14 civarındadır.
Galyum Arsenit(GaAs): Bu malzemeyle laboratuar şartlarında %25 ve %28 (optik yoğunlaştırıcılı) verim elde edilmektedir. Diğer yarıiletkenlerle birlikte oluşturulan çok eklemli GaAs pillerde %30 verim elde edilmiştir. GaAs güneş pilleri uzay uygulamalarında ve optik yoğunlaştırıcılı sistemlerde kullanılmaktadır.
Amorf Silisyum: Kristal yapı özelliği göstermeyen bu Si pillerden elde edilen verim %10 dolayında, ticari modüllerde ise %5-7 mertebesindedir. Günümüzde daha çok küçük elektronik cihazların güç kaynağı olarak kullanılan amorf silisyum direkt güneş ışınımı az olan bölgelerde de santral uygulamalarında kullanılmaktadır. Amorf silisyumun bir başka önemli uygulama sahası ise binalara entegre yarısaydam cam yüzeyler, bina dış koruyucusu ve enerji üreteci uygulamalarıdır.
Kadmiyum Tellürid(CdTe): Çok kristal yapıda bir malzeme olan CdTe ile güneş hücre maliyetinin çok aşağılara çekileceği tahmin edilmektedir. Laboratuar tipi küçük hücrelerde %16, ticari tip modüllerde ise %7 civarında verim elde edilmektedir.
Bakır İndiyum Diselenid(CuInSe2): Bu çokkristal hücre laboratuar şartlarında %17,7 ve enerji üretimi amaçlı geliştirilmiş olan prototip bir modülde ise %10,2 verim elde edilmiştir.
Optik Yoğunlaştırıcılı Hücreler: Gelen ışığı 10-500 kat oranlarda yoğunlaştıran mercekli veya yansıtıcılı araçlarla modül verimi %20’nin, hücre verimi ise %30’un üzerine çıkılabilmektedir. Yoğunlaştırıcılar basit ve ucuz plastik malzemeden veya camdan yapılmaktadır.
Laboratuarlarda ulaşılan en yüksek hücre verimleri 1 cm 2 ‘lik hücre alanı için:
Kristalsi güneş hücresi için: %24.5
Polikristalsi : %19.8
Amorfsi : %12.7
Çok Katlı Güneş Hücreleri : %40
Son Yıllarda Üzerinde Çalışılan Güneş Pilleri
Ticari ortama girmiş olan geleneksel Si güneş hücrelerinin yerini alabilecek verimleri aynı ama üretim teknolojileri daha kolay ve daha ucuz olan güneş hücreleri üzerinde de son yıllarda çalışmalar yoğunlaştırılmıştır.
Bunlar; fotoelektrokimyasal çok kristalli Titanyum Dioksit hücreler, polimer yapılı Plastik hücreler ve güneş spektrumunun çeşitli dalga boylarına uyum sağlayacak şekilde üretilebilen enerji bant aralığına sahip Kuantum güneş hücreleri gibi yeni teknolojilerdir.
Fotovoltaik Sistemler
Güneş hücreleri, elektrik enerjisinin gerekli olduğu her uygulamada kullanılabilir. fotovoltaik modüller uygulamaya bağlı olarak, akümülatörler, invertörler, akü şarj denetim aygıtları ve çeşitli elektronik destek devreleri ile birlikte kullanılarak bir fotovoltaik sistemi oluştururlar. Bu sistemler, geçmiş zamanlarda sadece yerleşim yerlerinden uzak, elektrik şebekesi olmayan yörelerde, jeneratöre yakıt taşımanın zor ve pahalı olduğu durumlarda kullanılırken, artık şebeke bağlantısı olan yerleşim yerlerinde de şebeke bağlantılı olarak evlerin çatılarına ve büyük ölçekli santral uygulamalarında da kullanımı oldukça yaygınlaşmıştır. Bunun dışında dizel jeneratörler ya da başka güç sistemleri ile birlikte karma olarak kullanılmaları da mümkündür.
Şebekeden bağımsız sistemlerde yeterli sayıda fotovoltaik modül, enerji kaynağı olarak kullanılır. Güneşin yetersiz olduğu zamanlarda ya da özellikle gece süresince kullanılmak üzere genellikle sistemde akümülatör bulundurulur. Fotovoltaik modüller gün boyunca elektrik enerjisi üreterek bunu akümülatörde depolar, yüke gerekli olan enerji akümülatörden alınır. Akünün aşırı şarj ve deşarj olarak zarar görmesini engellemek için kullanılan denetim birimi ise akünün durumuna göre, ya fotovoltaik modüllerden gelen akımı ya da yükün çektiği akımı keser. Şebeke uyumlu alternatif akım elektriğinin gerekli olduğu uygulamalarda, sisteme bir invertör eklenerek akümülatördeki DC gerilim, 220 V, 50 Hz.lik sinüs dalgasına dönüştürülür. Benzer şekilde, uygulamanın şekline göre çeşitli destek elektronik devreler sisteme katılabilir. Bazı sistemlerde, fotovoltaik modüllerin maksimum güç noktasında çalışmasını sağlayan maksimum güç noktası izleyici cihazda bulunur. Aşağıda şebekeden bağımsız bir fotovoltaik sistemin şeması verilmektedir.
Şebeke bağlantılı fotovoltaik sistemler yüksek güçte-satral boyutunda sistemler şeklinde olabileceği gibi daha çok görülen uygulaması binalarda küçük güçlü kullanım şeklindedir. Bu sistemlerde örneğin bir konutun elektrik gereksinimi karşılanırken, üretilen fazla enerji elektrik şebekesine verilir, yeterli enerjinin üretilmediği durumlarda ise şebekeden enerji alınır. Böyle bir sistemde enerji depolaması yapmaya gerek yoktur, yalnızca üretilen DC elektriğin, AC elektriğe çevrilmesi ve şebeke uyumlu olması yeterlidir.
Fotovoltaik sistemlerin şebekeden bağımsız (stand-alone) olarak kullanıldığı tipik uygulama alanları aşağıda sıralanmıştır.
– Haberleşme istasyonları, kırsal radyo, telsiz ve telefon sistemleri
– Petrol boru hatlarının katodik koruması
– Metal yapıların (köprüler, kuleler vb) korozyondan koruması
– Elektrik ve su dağıtım sistemlerinde yapılan telemetrik ölçümler, hava gözlem istasyonları
– Bina içi ya da dışı aydınlatma
– Dağevleri ya da yerleşim yerlerinden uzaktaki evlerde TV, radyo, buzdolabı gibi elektrikli aygıtların çalıştırılması
– Tarımsal sulama ya da ev kullanımı amacıyla su pompajı
– Orman gözetleme kuleleri
– Deniz fenerleri
– İlkyardım, alarm ve güvenlik sistemleri
– Deprem ve hava gözlem istasyonları
– İlaç ve aşı soğutma
Yoğunlaştırıcılı Fotovoltaik Sistemler
Silisyum bazlı düzlemsel fotovoltaik malzemeden oluşan hücre yüzeyine çarpan güneş ışığı, elektrik enerjisine dönüştürülür. Bu sistemlerde kullanılan malzeme ve hücre alanı büyük, verim düşüktür bu da maliyeti artırmaktadır. Silisyum olmayan ince film veya CPV (yoğunlaştırıcılı fotovoltaik) teknolojileri ile silisyum veya diğer yarıiletken malzemenin kullanımını azaltmak mümkündür. Böylece, fosil yakıtlardan oluşan geleneksel şebeke elektriği ile güneş santral sistemlerinin ürettiği elektrik rekabet edebilecektir. İnce film teknolojilerinin üretimi ucuz olmasına rağmen, daha nadir kullanılması ve kaynak malzemenin (Ga, In gibi) pahalı olması, verimli ve güvenilir olmalarına rağmen, yaygın kullanımını kısıtlamaktadır.
Diğer yandan, CPV teknolojisi, daha az malzeme kullanılması dolayısıyla daha düşük fiyat, yüksek verim ve daha etkin pratik bir yol sunmaktadır. Optik yoğunlaştırıcılar (CPV), güneş ışınlarını çok küçük bir alan kaplayan (1 cm2) hücrenin üzerine odaklar ve güneş enerjisini elektrik enerjisine dönüştürür. CPV teknolojilerinde pahalı olmayan aynalar ve mercekler gibi optik malzemeler kullanılır.
CPV yoğunlaştırıcıdaki ışığın odaklandığı hedef alana bir PV yarıiletken malzeme yerleştirilir, diğer düzlemsel güneş hücrelerine göre daha küçük alana merceklerle sağlanan daha yüksek yoğunluktaki ışık ışınlarının düşürülmesi ile daha yüksek verimde enerji üretimi sağlanmaktadır. Burada kullanılan PV malzeme Si dan 10 kat daha pahalı olmasına rağmen yüksek verim ve az malzeme kullanımından dolayı toplam maliyet daha düşük olmaktadır.
CPV sisteminde kullanılan çok eklemli güneş hücreleri, dönüşüm veriminin artmasına yardımcı olmaktadır. Son yıllarda yapılan çalışmalara göre; çok eklemli güneş hücrelerinin kullanılmasıyla verimi % 40 ‘a ulaşmıştır. Bu çok eklemli PV sistemler, güneş spektrumunun önemli bir kısmını kullanarak, gelen güneş enerjisini daha verimli bir şekilde elektrik enerjisine dönüştürmektedirler.
Yandaki resimde geleneksel PV modülden daha küçük, ince, düzlemsel, yüksek performanslı ve düşük fiyatlı bir CPV modül örneği görülmektedir.
Bu CPV modüllerin düzlemsel PV ler ile karşılaştırıldığında avantajları:
• Verilen bir alana düşen güneş enerjisinden üretilen aynı miktardaki enerji için, diğer PV sistemlere göre aktif yarıiletken malzemenin maliyeti 1/1000 i kadardır.
• Güneşten üretilen elektriğin fiyatı günümüzde kullanılanın yarısından azdır.
• Düzlemsel PV nin veriminin iki katı verime sahiptir.
Fotovoltaik Modül Verimi
Dünyada Önemli PV Pazarına Sahip Ülkeler
Dünyadaki Durum
2011 yılı sonu itibarıyla kurulan en büyük PV santrali Hindistan ‘da GUJARAT SOLAR PARK’ta 239 MW, GOLMUD SOLAR PARK ‘ta 200 MW, ayrıca 2019’ da bitirilmesi planlanan; Çin ‘de 2000 MW ‘lık bir PV santral projesi bulunmaktadır.
Kristal PV teknolojisine dayalı bir MW ‘lık santral için, 15- 20 dönüm, ince film PV santral için ise, 25- 30 dönüm alana ihtiyaç vardır.
Fotovoltaik Hücrelerin Yapısı Ve Çalışma Prensipleri
Günümüz elektronik ürünlerinde kullanılan transistörler, doğrultucu diyotlar gibi fotovoltaik hücreler de, yarı-iletken maddelerden yapılırlar. Yarı-iletken özellik gösteren birçok madde arasında fotovoltaik hücre yapmak için en elverişli olanlar, silisyum, galyum arsenit, kadmiyum tellür gibi maddelerdir.
Yarı-iletken maddelerin fotovoltaik hücre olarak kullanılabilmeleri için n ya da p tipi katkılanmaları gereklidir. Katkılama, saf yarıiletken eriyik içerisine istenilen katkı maddelerinin kontrollü olarak eklenmesiyle yapılır. Elde edilen yarı-iletkenin n ya da p tipi olması katkı maddesine bağlıdır. En yaygın güneş pili maddesi olarak kullanılan silisyumdan n tipi silisyum elde etmek için silisyum eriyiğine periyodik cetvelin 5. grubundan bir element, örneğin fosfor eklenir. Silisyum’un dış yörüngesinde 4, fosforun dış yörüngesinde 5 elektron olduğu için, fosforun fazla olan tek elektronu kristal yapıya bir elektron verir. Bu nedenle V. grup elementlerine ‘verici’ ya da ‘n tipi’ katkı maddesi denir.
P tipi silisyum elde etmek için ise, eriyiğe 3. gruptan bir element (alüminyum, indiyum, bor gibi) eklenir. Bu elementlerin son yörüngesinde 3 elektron olduğu için kristalde bir elektron eksikliği oluşur, bu elektron yokluğuna hol ya da boşluk denir ve pozitif yük taşıdığı varsayılır. Bu tür maddelere de ‘p tipi’ ya da ‘alıcı’ katkı maddeleri denir.
P ve N tipi katkılandırılmış malzemeler bir araya getirildiğinde yarıiletken eklemler oluşturulur. N tipi yarıiletkende elektronlar, p tipi yarıiletkende holler çoğunluk taşıyıcısıdır. P ve N tipi yarıiletkenler bir araya gelmeden önce, her iki madde de elektriksel bakımdan nötrdür. Yani P tipinde negatif enerji seviyeleri ile hol sayıları eşit, n tipinde pozitif enerji seviyeleri ile elektron sayıları eşittir. PN eklem oluştuğunda, N tipindeki çoğunluk taşıyıcısı olan elektronlar, P tipine doğru akım oluştururlar. Bu olay her iki tarafta da yük dengesi oluşana kadar devam eder. PN tipi maddenin ara yüzeyinde, yani eklem bölgesinde, P bölgesi tarafında negatif, N bölgesi tarafında pozitif yük birikir. Bu eklem bölgesine ‘geçiş bölgesi’ ya da ‘yükten arındırılmış bölge’ denir. Bu bölgede oluşan elektrik alan ‘yapısal elektrik alan (Ey)’ olarak adlandırılır. Aşağıda PN eklemin oluşması şematize edilmiştir.
Yarıiletken eklemin fotovoltaik hücre olarak çalışması için eklem bölgesinde fotovoltaik dönüşümün sağlanması gerekir. Bu dönüşüm iki aşamada olur, ilk olarak, eklem bölgesine ışık düşürülerek elektron-hol çiftleri oluşturulur, ikinci olarak ise, bunlar bölgedeki elektrik alan yardımıyla birbirlerinden ayrılır.
Yarı iletkenler, bir yasak enerji aralığı tarafından ayrılan iki enerji bandından oluşur. Bu bandlar Valans bandı ve İletkenlik bandı adını alırlar. Bu yasak enerji aralığına eşit veya daha büyük enerjili bir foton, yarıiletken tarafından soğurulduğu zaman, enerjisini Valans bandındaki bir elektrona vererek, elektronun iletkenlik bandına çıkmasını sağlar. Böylece, elektron-hol çifti oluşur. Bu olay, pn eklem fotovoltaik hücrenin ara yüzeyinde meydana gelmiş ise elektron-hol çiftleri buradaki elektrik alan tarafından birbirlerinden ayrılır. Bu şekilde fotovoltaik hücre, elektronları n bölgesine, holleri de p bölgesine iten bir pompa gibi çalışır. Birbirlerinden ayrılan elektron-hol çiftleri, fotovoltaik hücrenin uçlarında yararlı bir güç çıkışı oluştururlar. Bu süreç yeniden bir fotonun hücre yüzeyine çarpmasıyla aynı şekilde devam eder. Yarıiletkenin iç kısımlarında da, gelen fotonlar tarafından elektron-hol çiftleri oluşturulmaktadır. Fakat gerekli elektrik alan olmadığı için tekrar birleşerek kaybolmaktadırlar.